USE OF THE JOLLY-SEBER MODEL TO DETECT VARIATION IN SURVIVAL, POPULATION SIZE AND RECRUITMENT OF bRIDLED HONEYEATERS AT PALUMA, QUEENSLAND

E. BELINDA DETTMANN
Australian Bird and Bat Banding Scheme, Australian Nature Conservation Agency, GPO Box 8, Canberra, ACT, 2601

Received 18 March, 1994

Abstract

Attention is drawn to deficiencies in some methods of estimating survival, including 'known to be alive' or 'calendar of captures' methods. The Jolly-Seber model is recommended for estimation of survival, population size and recruitment from capture-recapture data.

The Jolly-Seber model is described and used to analyse banding data collected from 184 Bridled Honeyeaters at Paluma, Queensland between 1982 and 1987. The average population size was 191 (± 90) but population varied markedly with season. A large influx of birds was detected in the April/June quarter in 1984 and 1986 when populations were estimated at 750 and 322 birds respectively. The local population in non-influx seasons averaged 80 birds. Annual survival (interpreted as proportion of birds remaining in the population) averaged 0.751 (± 0.256) overall with an expectation of further life of 3 years 6 months but survival also varied seasonally. In 1982-84 when most data were available annual survival averaged 0.672 during the period July-March (expectation of further life of 2 years 4 months) but dropped to 0.077 during the April-June influx period (expectation of further life of 4 months). Recruitment to the local population averaged 12 birds per quarter throughout the year but received a boost of several hundred birds during the April-June quarter in some years.

INTRODUCTION

Fstimates of survival are available for comparatively few species of Australian birds and some of the estimation methods used are known to yicld biased estimates of survival rates (Brownic el al. 1985). Rowley and Russell (1991) have summarized the methods and the resulting survival estimates for 35 Australian species. Yom Tov er al. (1992) introduced a new method to analyse a further 35 species, including 22 not included in Rowley and Russell's summary but their method underestimates survival.

It is appropriate to use life table methods to estimate survival when we are reasonably certain of the fate of all animals in our sample. The problems arise in the capture-recapture situation when we do not know the fate of missing animals.

Good methods are now available for estimating survival rates in open populations from capturerecapture data (Seber 1982; Pollock et al. 1990). Based on the Jolly-Scher model (Jolly 1965 ; Seber 196.5). these methods also provide for the estimation of population size and recruitment.

Nevertheless several inappropriate methods are still being used to estimate average annual survival from capture-recapture studies. These suffer from a number of shorteomings, and problems arising from their use are worse if we wish to compare estimates from different places or species or estimates derived from different methods of analysis.

Nicholls and Woinarski (1988) have described three methods of estimating survival which are based on the number of birds known to be alive (KTBA). Unfortunately all three suffer from problems. Method 1 is a modification of Lack's (19.54) method. Lack's method underestimates survival by an unknown but potentially large amount. Method 1 can be positively or negatively biased. Methods 2 and 3 provide overestimates of survival (again to an unknown degree). The latter methods (cited in Seber 1982, Pp. 252-25.3) were adapted from life-tables where the fate of all individuals is known and are no longer appropriate when this is not true. All these methods assume that survival is constant over the period of interest, which will rarely be the case.

Nichols and Pollock (1983) and Seher (1982, 198(0) drew attention to the serious biases in such methods and recommended that they be dropped. Nichols and Pollock showed that the KTBA approach assumes that survival rates are equal to capture rates (i.e. all birds in the area of interest will be captured on every occasion) and this assumption is rarely true for capture-recapture data. KTBA methods are shown to estimate complicated functions of survival rates and prohabilities of capture. The Jolly-Seber method was demonstrated to be superior to the KTBA estimates and Nichols (I)S(6) showed that KTBA estimates were especially inappropriate for use in comparative studies.

The Jobly-Seber model, derived independently by Jolly (190.5) and Seber ($19(65$) has heen found to be a useful model for populations in which there is death. permanent migation and recruitment. These are often refered to as open populations. A population which remains unchanged during the period of investigation (i.e. the effects of mortality. recruitment and migration are negligible) is called a closed population. In populations where migration is present, recruitment includes both birth and immigration, and mortality includes both death and permanent emigration.

The original Jolly-Seber model distinguished between the probability of an amimal surviving and its probability of being calught. It allows both quantities to vary between sampling periods and it has since been extended in a number of directions. It can include tags recovered from dead amimals (Buckiand 198()) and the case where different cohorts have different catchabilities (Buckiand 198?: Buckland. Rowley and Williams 198.3). It can allow for survival varying with age class (Pollock l98l) and for tag loss and trap shyness. These and other refinements are mentioned by Seher (198()) and Nicholls (10)2).

Although used widely by mammalogists and by overseas ornithologists the Jolly-Seber method has been largely ignored by Australian ornithologists. Given its advantages over other methods of estimating survival it has been thought worthwhile to describe the method and give an example of its use with Australian data.

In this paper the Jolly-Seber method is used to estimate survival, population size and recruitment from capture-recapture data covering the period

1082 to 1987 for a population of Bridled Honeycaters at Paluma. Queensland. Estimates are then compared between years and between seasons.

METHODS

Sutudy Site

 $\left.146^{\circ} 9^{\prime} \mathrm{E}\right)$ and about 80 km north-west of Townsville in Oucensland. The Paluma Range rises (o 1050 m above sea level and raintall supports an area of tropical rainforcst. Wet selerophyll forest dominated by Flooded Gum (Euralyptas grandis) occurs on the rainforest margin. Within the wet sclerophyll forest the understoreyeonsists of ratnforest plants or wet sclerophyll species.

The climate is tropical, with high rainfall. high humidity and warm to hot temperatures. Mean annual rainfall for Paluma is 266.5 mm with most rain falling between January and March.

Birds were trapped in mist nets which were opeoned for a minimum of 6 hours from 6.30 a.m. on cad oceasion. Banding was carried out once a month from Junc 1982 to December 1984, then sporadically thereafter up to May l9s7.

The data analysed comsist of the capture histories of is.t Bridled lloneyeaters catught at the study stite between June 1982 and May 1987. It was not possible to detect whether birds were juvenile or adult, and only lit of the birds could be sexed (9 females, 5 males) so that age and sex have been ignored in the analysis.

Data were initially consolidated into annual totals based on catendar years. This time span is appropriate for birds of the wet tropics where breceling. athough it can occur in all months is frequently intiated by the onse of the wet season in midsummer To allow calculation of seasonal effects the data were also analysed as quarterly totals for January-March, April-Jane. July-September and Oetober-December for the years 1982101986.

Stutistical Andusis

Estimates of the parametes were obtaned using the JollySeber method described below which follows Scher (I982). All measures of variation are standard errors which were calculated from the formula given by Pollock at al. (1990)). using the program JOLLY (Brownic et al. 1985: Pollock et al. 190(0)

It is assumed that at the first time of banding there is a population of N_{1} birds (of a particular species or group) present in the atrea of interest. At the second point in time the number of birds present will be N_{2}. Between the two times we assume that B_{1} birds have been recruited to the population, by birth or immigration, and that $\mathrm{L}_{\text {, }}$ birds have been lost through death or emigration. We shall call the proportion of birds lost the mortality rate $\left(d_{1}\right)$. although this will include losses through emgration as well as death. The number I. of birds lost between the two times is equal to $\mathrm{d}_{1} \mathrm{~N}_{1}$. If we call the survival S_{1}, then mortality $\left(d_{1}\right)=1-S_{1}$. We can now saly that the number of birds present at time 2 is equal to the
number present at time 1 . plas birds recruited to the population through birth or immigration. minus birds bost from the popalation through death or cmigration.
i.c. $N_{2}=N_{1}+B_{1}-\left(1-S_{1}\right) N_{1}$

This can be gens ralized so that. for each pair of consectutive timess saly time i and time +1 .
$N_{1,1}=N_{1}+B_{1}-\left(1-S_{1}\right) N_{1}$.
The objective is to estimate population size (N_{i}) recrublment $\left(B_{i}\right)$ and survival $\left(S_{i}\right)$. and their corresponding standarderrors. for cach time period.
We assume:
(1) every bird in the population has the same probability of being caught in a given sample, provided it is alive and in the popalation at that time:
(2) every bird in the population has the same probability of surviving from one sampling period to the next:
(3) every bird captured in the population has the same probability of being returned to the population:
(.t) birds do not fose bands and all banck are comecely reported on recovers:
(5) sampling time is small in relation to total time:
(6) losses to the popalation from emigration or death are permanent.

Notation is summarized in Table 1 . The values m_{f}. $\mathrm{r}_{\text {i }}$. and 2, can be calculated from the tabulation of $m_{t f}$. i.e. the number caught in the ith sample next captured in the joh sample. The value:, m, are the eolamn lotals, $r_{\text {, are }}$ the row totals and z_{f} are the totals of the numbers in the rectangular block to the right of column i and above row i where $i=j$. Formalace for $\mathrm{M}_{i} . \mathrm{S}_{i}$, $\mathrm{N}_{1}, \mathrm{~B}$, and p , are as lollows:
(ialculation of number of birds marked (M_{t} and M^{*})
$\mathbf{M}_{t}=\frac{\mathbf{R}_{t}+1}{\mathrm{r}_{t}+1} \cdot z_{t}+\mathrm{m}_{i}(i=2.3, \ldots . s-1)$
$\mathrm{M}^{*}, \frac{\mathbf{R}_{i}}{\mathrm{r}_{t}} \cdot z_{i}+\mathrm{m},(i=2,3, \ldots s-1)$
Calculation of survival (S_{1} and S_{1})
$\mathrm{S}_{1}=\frac{\mathrm{M}_{2}}{\mathrm{R}_{1}}$

Calculation of population size $\left(N_{t}\right)$
$N_{1}=M_{1} \cdot \frac{n_{1}+1}{n_{1}+1}(i=2,3, \ldots s-1)$.
Calculation of recruitment (B_{1})
$\mathbf{B}_{1}=N_{1+1}-S_{i}\left(N_{1}-n_{t}+R_{i}\right),(i=2,3, \ldots, s-2)$
Calculation of probability of capture (p,).
$\mathrm{P}_{t}=\frac{\mathrm{m}_{1}}{\mathrm{M}_{1}}(i=2,3 \ldots \mathrm{~s}-1)$
Examples of calculations are given in Table 4.
The expected life-span after capture, E_{f}. can be calculated from survival (S,) using the formula
$\mathrm{E}_{1}=-1 / \log \left(S_{l}\right)$.

TABLEE 1
Summary of notation.
$s=$ number of sampling periods,
$P_{t}=$ probability of a bird being calught in the ith sample .
$\mathrm{d}_{\mathrm{s}}=$ probability of a bird kaving the population between theith and $(i+1)$ th sample.
$S_{t}=1-d_{i}=$ probability of a bird surviving from the ith to the $(i+1)$ th sample.
$N_{t}=$ total number of birds in the population just before timei.
$\mathbf{M}_{\mathbf{t}}=$ total number of banded birds in the population just before time i.
$\mathbf{M}^{*}{ }^{\prime}=$ total number of banded birds in the population just before time i (ignoring possible bias for small numbers).
$n_{1}=$ number of birds caught in the ith sample .
$\mathrm{m}_{i}=$ number of banded birds caught in the ith sample .
$\mathrm{m}_{1 /}=$ number catught in the ith sample next captured in the jth.
$\mathrm{R}_{1}=$ number of banded birds released after the ith sample,
$r_{1}=$ number of handed birds from the release of $\mathrm{R}_{\text {, }}$ birds which are later recaptured.
$z_{1}=$ number of different birds callght belore the ith sample which are not caught in the ith sample but are caught later.
$B_{1}=$ number of new birds joining the population in the interval from time $t_{\text {, }}$ (o) time t_{1+1} which are still alive and in the population at time $t_{\text {, }}$.
$\mathrm{L}_{\mathrm{t}}=$ number of birds leaving the population in the interval fromtime t, otime t_{t+1}.
$\Sigma_{1} .=$ expectation of life after capture
$\log _{\mathrm{g}}\left(S_{i}\right)=$ logarithm to base e of survival $\left(S_{1}\right)$.
Known variables are: $\mathrm{n}_{i}, \mathrm{~m}_{1}, \mathrm{~m}_{i j}, \mathrm{R}_{1}, \mathrm{r}_{i}, Z_{i}$.
Unknown values are: $p_{i}, S_{i}, N_{1}, M_{1}, B_{1}$.
It is assumed: $m_{1}=r_{4}=z_{1}=z_{s}=M_{1}=0$ atdd $B_{11}=N_{1}$.

Simee survival has been defined in terms of birds remaining in the poputation, expected lifespan can be thought of as the expected time birds are present before they leave or dic. For survival values greater than 0.1 the approximation $\mathrm{E}_{1}=(2-(\mathrm{l}) / 2 \mathrm{~d}$. where d is mortality is sometimes used. However, for survival values below 0.1 the approximation no fonger holds and the log formula is appropriate.

Estimates for annual and quarterly survival are not comparable. To transform the quarterly survival estimates to annual estimates it is necessary to take the log of S (quarterly). divide by 3 . multiply by 12 , and take the antilog.

RESULTS

Capture histories for individual birds can be represented by a series of zeros and ones. representing not captured or captured, respectively. in a particular period. Some typical capture histories are shown in Cable 2. Bird 1 was captured in the first period and never seen again. Bird 2 was captured in the first period, retrapped in

TABLE 2

Capture histories for four hypothetical birds. $1=$ captured. $0=$ not captured.

| | Caplureperiod | | | | |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| Bird | 1 | 2 | 3 | 1 | 5 |
| 1 | 1 | 1 | 0 | 0 | 0 |
| 2 | 1 | 1 | 0 | 0 | 0 |
| 3 | 1 | 1 | 1 | 0 | 1 |
| 4 | 0 | 1 | 10 | 0 | 0 |

period 2 but not caught again. Bird 3 was caught in periods 1. 2. 3 and 5. Bird 4 was caught in period 2 but not recaptured.

As many birds may have the same capture history, such information can be compressed by introducing a weighting variable, or count, beside cach type of capture history to indicate how many birds are represented with that history. The full set of annual capture histories for the Bridled Honcycaters is given in Table 3.

TABLE 3
Capture-histories for Brided Honeyeaters at Paluma. $1=$ čaptured. $0=$ not ciaptured.

Capture period						Number of hirds
1	2	3	4	5	6	
1	1	1	1	$1)$	(1)	2
1	1	1	()	()	I	1
1	1	1	()	()	()	3
1.	1	0	1	I	(1)	1
1	1	0	()	$1)$	1	2
1	1	()	$1)$	()	10	6
1	$1)$	1	1	()	0	2
1	1	1	$1)$	$1)$	0	2
1	$1)$	()	$1)$	0	1	1
1	0	()	0	10	()	23
0	I	1	1	1	$1)$	1
$1)$	1	1	1	$1)$	0	1
$1)$	1	1	0	()	1	1
$1)$	I	1	11	0	()	6
$1)$	1	$1)$	(1)	1	$1)$	1
0	1	11	()	0	1	1
$1)$	1	0	1	$1)$	(1)	27
$1)$	()	1	1	(1)	1	1
$1)$	$1)$	1	I	$1)$	(1)	4
$1)$	11	1	11	I	1	1
$1)$	()	1	11	1	()	1
0	$1)$	1	$1)$	0	I	1
$1)$	0	I	0	0	0	53
(1)	$1)$	$1)$	1	1	0	1
1	$1)$	()	1	0	$1)$	1.5
11	$1)$	()	(1)	1	()	16
11	(1)	0	0	0	1	10

The number of birds caught in each year can be calculated from the total of the weights in rows with a 1 in the appropriate year column. The complete set of yearly totals for captures are given in Table 4.

The capture historics are also needed to tahulate the pairs of successive captures, $m_{i j}$. For instance the number of birds that were caught in year 1 . next in year 2, is 15. These are the birds that contribute to the capture combination (1,2). Birds with the capture history 11101 contribute towards 3 separate cells, namely the (1,2), (2,3) and (3,5) combinations. The full tabulation of 'this and the next' captures on an annual basis, designated $m_{i i}$. is shown in the body of Table 4.

TABLE 4
Tabulation of $\mathrm{m}_{f f}$, the number caught in the ith sample next calught in the f th sample of Brifled Ifoneycaters at Paluma.

TABLE 5
Annual population estimates and standard errors of estimates for the Bridled Honcyeater population at Palama from 1982 to I986.

Y'car	i	Number banded M,	$\begin{gathered} \text { Survival } \\ S_{i} \end{gathered}$	Population size N_{i}	Recruitment B,	Prol)ability of capture P,	$\begin{gathered} \text { SF } \\ \text { (survival) } \\ \text { se }\left[S_{i} \mid\right. \end{gathered}$
1982	1	0.00	11.648	-	-	-	1.140
1983	2	27.86	11.718	94.12	125.211	(0.530	0.204
1984	3	47.59	0.6 .36	192.73	33.51	(1).399	0.310
1985	4	70.00	1.000	156.15	168.85	0.171	0.100
1986	5	บ8.00	-	322.00	-	0.06 .1	-
Mcan		60.86	11.751	191.23	ו0x.18	(1.293	0.259

TABLE 6
Scasonal population estimates for the [3rided Honeyeater population at Palama for 3-month periods from les? (0) 1985.

Scason	i	Number banded M,	$\begin{gathered} \text { Survival } \\ S_{t} \end{gathered}$	Population size N ,	Recruitment B	Probability of capture I,	$\begin{gathered} \mathrm{SE} \\ \text { (survival) } \\ \text { se[Si] } \end{gathered}$
Apr.-Junc 1982	1	().0) 0	0. 4.56	-	-	-	11.177
July-Scpt.19x?	2	8.67	0.664	57.78	2.92	(1.231	(1.150
()ct-DJec.19xz	3	17.20	1.0100	41.28	35.56	().233	0.359
Jam--Mar. 1983	4	.32.00	(1).919	89.60	14.01	().12.5	(1.29) 4
Appr-June 1983	5	39.25	0.6 .56	96.34	36.12	0,255	0.256
July-Sept. 1983	6	37.21	0.841	(9).20	(1.)()	0.0 .54	(). 308
	7	38.27	(). 877	6.3 .79	20.43	0.287	(1).316,
Jan--Mar. 1984	8	41.67	1.0000	76.39	592.49	0.120	(1.8リ)
Apr.-Junce lest)	$1(12.90$	0.231	749.71	(1).0)	0.058	(1.080
July-Scpt. lesta	111	35.87	1.0000	49.33	18.83	(0.195	(1.39)
()ct.-D)	11	51.33	(1.680)	S2.1.3	().0)	0.27 .3	-
Oct-Dec. 1985	12	4.3 .00	1.0010	69.30	241.15	0.081	1.000
Oct-DCor. 1986	1.3	6.3 .00	0.167	.322.00	(1).01)	0.061	-
Mcan		48.62	-	1.37 .15	58.55	(). 142	-

Population variables estimated on an amual basis are summarized in Table 5. Seasonal population variables for the years 1982 to 1985 are given in Table 6.

Survival and expected life-span

A summary of survival estimates and expected life spans. all on an annual basis, is given in Table 7.

The overall average survival rate of Bridled Honeyeaters at Paluma was $0.751(\pm 0.256)$ and survival increased somewhat over the four years (Table 5). The average life span was 3 years 6 months. However survival varied markedly between seasons. Calculated in annual terms, survival was lowest in the April-June quarter,
with survival rates of 0.0433 in 1982 , (0.1850 in 1983 and 0.0028 in 1984, with corresponding life expectancies of 4,7 and 2 months. respectively. Survival was higher in other seasons, up to 1.0 in the December 1982, and March and September 1984 quarters, but it varied from year to year.

Over the period 1982-84 for which most data was available, the mean survival rate for the March-June quarter was 0.(077, with a corresponding life expectancy of 4 months. The mean survival for the other nine months was 0.671 with a corresponding life expectancy of 2 years 5 months. These survival figures are all expressed on an annual basis.

IABLE 7
Annual survival rate and expected life-span (years) of Bricled Honcyeaters for scasons during 1982-1985.

Period	Annual survival rate	Expected life-span (ycars)
Apr lunc 1482	(). 0.433	0.32
July-Sept. 19x?	(1).19.4.3	11.61
(0)t-D)ec. 1982	1.00000	-
1982	11.6478	2.30
Jan.-Mar. 198?	0.71 .30	2.96
Apr.-Junc 1983	(1.1850	0.59
I uly-Scpt 19x.3	0. 50 (1)7	1.4 .5
() (t.-D)	(1. ミリ21	1.91
1983	11.718.3	3,00
Jan--Mar. 1984	1.00000	-
Apr.-Iune 19:+4	0.01028	11.17
July-Sept. 19x.t	1.01000	-
()at-D)ec. 198t	(1.213\%	10.6 .5
198-4	1).6.36.7	2.21
Jan-DCC. 1985	1. (0000	-
1985	1.00000	-

P'opulation size

The average population size of Bridled Honeycaters during the study was $191(\pm 9(0)$ birds, but population tended to increase as the study progressed, from 94 in 198.3 to 322 in 1986. However, there were large increases in population in June of $198+$ and 1986 where sizes were 75() and 322 respectively. The local population in nonintlux seasons averaged 8() birds.

Recruitment

Annual recruitment figures were misleading as recruitment varied markedly with season. Large influxes were measured following the March 1984 and December 1985 quarters, of 592 and 241 birds respectively. At other times recruitment averaged 12 birds per quarter.

Probability of capture

Probability of catching a bird in any one year (decreased as the study progressed, from (0. 54 (± 0.13) in 198.3 to 0.06 (± 0.06) in 1986. On a quarterly basis, the probability of capture was correspondingly lower, averaging (1.14 per season.

DISCUSSION

Few estimates of survival or local population size are available for nomadic or migrant species in Australia and demographic estimates for tropical species are particularly sparse. The avalability of the Paluma data set prompted this attempt to estimate some population parameters for Bridled Honeyeaters, a species which has not been widely studied to date.

The results of this study should be interpreted with calution as sample sizes were small and standard errors of estimates were correspondingly large. Seber (1982) recommends that m_{i} and z_{i} be greater than 10 for satistactory estimates to be achieved and numbers were somewhat below this level for quarterly periods.

Nevertheless the results clearly demonstrate the presence of passage birds between March and June during the study. The survival rate drops in the April-June quarter of each year with birds remaining in the population for periods of 2 to 7 months. High recruiment levels between the March and June quarters led to population sizes of several hundred birds in the April-Junc quarter in 1984 and 1986.

These results suggest that there is a local population of between 50 and 100 () Bridled I Ioneyeaters present in the study area throughout the year. The population is sometimes augmented by an influx of birds on passage during the AprilJune quarter.

It should be noted that overall averages of survival, population size and recruitment can mask possible variation. If there is reason to suspect seasonal or amnual variation over the period of study, overall averages will be biased and can hide important variations in the variables under study.

Thus the average survival in non-intlux months in 1982-84 was ().672 with an average expected life span of 2 years 4 months, while the corresponding influx season (A pril-June) figures were ().077 and 4 months respectively.

The Jolly-Seber approach has important advantages in this regard. It allows us to model variation from period to period. It also uses information from each pair of successive captures from every bird, regardless of when it was first caught, thus making maximum use of the
information available．It further distinguishes between those marked amimals caught at time i and those not caught at time i but caught later． This enables us to estimate the probability of capture．which in this casc ranged from（0．539 in 1982 to（0．06t in 1986 as the rate of visits decreased．These values demonstrate how the assumption of complete captures，required by the KTBA methods，is violated in this case．

The Jolly－Seber method also allows us to calculate standard errors and confidence intervals so that we can use powerful statistical methods based on probability theory，assess the value of our estimates，and decide whether or not they remain constant or change over time or from place to place．

It is worth making several points about the model assumptions．First，assumptions 1， 2 and 6 are testable using goodness－of－fit tests（Pollock ef al．1985：Brownic et al．1986）．Second，it should be noted that some estimators are not sensitive to deviations from particular assumptions．whereas others are．For example differing capture probabilitics（deviation from assumption l）can lead to lairly large biases in estimates of popula－ tion size but alfect survival very little（Carothers 1973，1979：Nichols and Pollock 1983）．Permanemt trap response（c．g．net shyness）likewise results in biased estimates of population size but produces no bias in survival estimates（Nichols et al．1984）．Finally．Jolly－Scher estimates perform better than KTBA estimators even when under－ lying assumptions are not met exactly．For instance，the commonly used estimator of survival as the proportion of birds seen in any one year after year i performs much worse than the Jolly－ Seber survival estimator．even when capture probabilitics differ（Nichols and Pollock 1983）．

Seber（1982．1986）and Nicholls（1992）have recommended that approaches based on ＂minimum number known alive＂or＂calendar of captures methods be dropped and replaced by approaches based on models like Jolly－Seber．

ACKNOWLEDGMENTS

The Townsvile Bird Study Group collected the data．John Druhan sparked my interest with his initial analysis．Andrew Taplin discussed procedures at Paluma and critically reviewed the mantuscript．Barry Baker encouraged me to analyse the
data and describe the Jolly－Seber method and made many constructive suggestions．Birds were marked with bands． supplied by the Australian Bird and Bat Banding Scheme．

REFERENCES

Brownic．C．Anderson，D．R．．Bumham．K．P．and Robson， D．S．（198．5）．Statistical Inference from Band Recovery data．（US Fish and Wildlife Service Resource Publication 156：Washington．DC．）
Buckland．S．T．（Iリタ（））A modified analysis of the Jolly－Scher capture－recapture model．Biometress 36：419－435．
Buckland，S．T．．Rowley．I．and Williams．D．A．（I98．3）． Estimation of survival from repeated sightings of taged galahs．J．Anim．Ecol 52：56．3－573．
Hines．J．E．and Sauter．J．R．（19タ9）．Program COONTRAST： －A Gencral Program for the Analysis of Several Survival or Recovery Rate Estimates．（US Jish and Widdliti Service Technical Report 24：Washington．DC．）
Jotly．（；M．（ 1965 ）Explicit estimates from capture－rceapture data with both death and immegration－stochastic model． Biometriku 52：225－2．47．
Krementz．D．G．，Saluer，J．R．and Vichols，J．D．（I989）． Model－based estimates of annual survival rates are preferable to observed maximum lifespan statistice for use in comparative life－history studics．Oikos 56： 203208.
Latck．D．（1954）．The Vatural Regulation of Animal Numbers（ Clarendon Press：Oxford．）
Nicholls．D．（3．and Woinarski．I．（．．Z．（1988）．I ongevity of Pied Currawongs at Timbertop，victoria．（orella 12：4．3－47．
Nichols．J．D．（IリN（1）．On the use of enumeration estimators for intcrspecific comparisons，with comments on a ‘trappabilitv estimator．J．Mammal．67：59（L－593．
Nichols，J．D．（Iリソ2）．（apture－recapture models：using marked animals to study population dynamics．Biosicience 42：9．4－102．
Nichols，J．D．and Pollock，K．H．（I98．3）．Estmation methodology in contemporary small manmal capture－ recapture studics．J．Mammal．64：253－260）．
Pollock，K．H．（198i）．Capture－recapture models allowing for age－dependent survival and capture rates．Biometres 37： 521524.

Pollock．K．II．，Nichols，J．D．．Brownie，（․ and Hincs． J．E．（199（））．Statistical inforence for capture－recapture experiments．Widell Monoser．107：1－97．
Rowley，I．and Russell，F．（I9OI）．Demography of passcrines in the temperate southern hemisphere In＇Bird Population Studies．Relevance to Conservation and Management． （Eds C．M．Perrins．J．－D．Lebreonand（；．J．M．Ihrons．） Pp．22－44．（Oxford University Press：Oxford．）
Scher．G．A． F ．（1965）．A note on the multiple－recapture census．Biometrika 52：240－259．
Scher．（3．A．F．（lソsz）．The Estimation of Animal Abundance and Related Parameters．2nd ed．（Macmillan：New York．）
Scber．G．A．F．（Iリ86）．A revicw of estimating animal abundance．Biometrics 42：267292．
YomTov．Y．，McCleery，R．and Purchase D．（Iりり2）．The survival rate ol Australian passerines．Ibis 134：374－379．

